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Abstract
We investigate the role of many-body correlations in determining the ground-
state behaviour of the coupled electron–hole quantum well structure by
including the mass asymmetry and the finite width of wells. The correlations
(both the intra- and inter-well) are treated beyond the static local-field theories
by employing the dynamical self-consistent mean-field approximation of
Hasegawa and Shimizu. The mass asymmetry is seen to introduce a marked
change in the ground state of the electron–hole system as compared to the
recent corresponding results on the mass-symmetric electron–hole bilayer. First,
the critical density for the liquid–Wigner crystal phase transition is greatly
enhanced (e.g., by a factor of about 4 for a GaAs/GaAlAs based system).
Second, there is a change in the role played by the electron–hole correlations.
The Wigner crystal phase is now found to be stable below a critical density only
at sufficiently large separation between the wells. The build-up of electron–
hole correlations with diminishing inter-well spacing tends to favour the charge-
density-wave phase over the Wigner crystal state, with the result that the
former always prevails in the sufficiently close approach of wells. This result
differs strikingly from the corresponding studies on the mass-symmetric system,
since the electron–hole correlations are predicted here to always support, at
sufficiently small well spacing, the Wigner crystal phase below a critical density
and the charge-density-wave phase at relatively higher densities. Further, we
find that the inclusion of the finite width of layers results in lowering of the
critical density for Wigner crystallization.

1. Introduction

Electron–hole (e–h) systems have been drawing a lot of interest over the years [1]. The
early studies focused on systems such as those realized in the bulk semiconductors [2], where
electrons and holes occupy the same region in space. However, the recent progress in nanoscale
semiconductor fabrication technology has made it possible to have e–h systems in coupled
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semiconductor quantum well structures [3]; here, electrons and holes are confined quantum
mechanically in two adjacent quantum wells, which are separated in real space. Such e–h
systems have proved relatively advantageous over those in conventional bulk semiconductors
not only since the electrons and holes are spatially separated here, but also due to having a direct
control on the carrier number density and the inter-well spacing, and hence, on the strength of
carrier interactions. Due to these reasons, this class of e–h systems has attracted considerable
attention in recent years and many interesting phenomena have been discovered. Notably, the
existence of an excitonic condensate phase, which was postulated many years ago [4], has
been confirmed experimentally [5] in these systems. On the other hand, the recent theoretical
investigations [6–9] on coupled layers of electrons and holes have predicted, apart from the
possibility of the excitonic phase, the stability of a density-modulated (DM) ground state in the
close vicinity of two layers. More precisely, two types of DM phase have been predicted: the
Wigner crystal (WC) phase below a critical density and the charge-density-wave (CDW) phase
at relatively higher densities. As an important finding [6, 9], the critical density for Wigner
crystallization has been found to be significantly higher than the corresponding value for an
isolated single layer. The prediction on the enhancement of Wigner crystallization has been
confirmed by the recent diffusion Monte Carlo simulations due to De Palo et al [10].

In the present work, we are primarily concerned with the e–h system as realized in a
coupled quantum well structure. We wish to examine the role of many-body correlations in
determining the ground-state behaviour of such a system. Earlier, Zheng and MacDonald [11],
Szymanski et al [6] and Liu et al [7] have studied the correlation effects on the basis of
a generalized mean-field approximation. Alatalo et al [12] have used the multicomponent
hypernetted-chain method to treat the correlations and have also extended their calculation
to a related system of more than two layers. The intra- and inter-layer correlations were treated
in [7] and [11] by using the Singwi, Tosi, Land and Sjölander (STLS) [13] approach. However,
Szymanski et al [6] argued that the STLS approach could not be applicable at densities down
to Wigner crystallization (i.e., in the strongly correlated regime) and, thereby, proposed a
different method for incorporating correlations in these situations: correlations within the layers
were included in the form of an STLS-like local-field correction (LFC) and the required static
structure factor was taken from the Monte Carlo simulation data of Tanatar and Ceperley [14],
while the correlations between the layers were treated within the STLS approach. This
calculation revealed that the e–h liquid could become unstable, at sufficiently small layer
separation, with respect to a DM ground state of the CDW and WC types. The WC phase
dominated at densities rs � 15, and the CDW phase for rs < 15. Here, rs = 1/(a∗

0

√
nπ) is a

dimensionless density parameter with n being the areal density of carriers in either of the layers
and a∗

0 the effective Bohr atomic radius. On the other hand, the conventional STLS approach
predicted [7, 8] always an instability towards a CDW ground state. In a recent work, Moudgil
et al [9] have considered correlations beyond the static local-field theories by extending the
dynamical self-consistent mean-field approximation of Hasegawa and Shimizu [15] (the so-
called quantum or dynamical STLS approach) to the bilayer system. It was found that the
dynamical STLS approach provided on the whole a better description of correlations than the
conventional STLS method as adjudged by a direct comparison with the computer simulation
experiments [10]. Further, the dynamical STLS approach accounted in a natural way for the
transition to both the CDW and WC phases. The WC phase was predicted to be stable for
rs � 10, and the CDW phase for rs < 10.

However, in all of the above mentioned theoretical as well as simulation studies, the holes
were assumed to have the same effective mass as the electrons, but this is not so in a real
physical situation; for instance, m∗

h/m∗
e ≈ 7 for a GaAs/GaAlAs based e–h system. m∗

h (m∗
e )

denotes the effective mass of holes (electrons). The mass asymmetry between the electron
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and hole layers should make, at the same number density of carriers, the (heavier) holes
comparatively more correlated than the electrons, and it may influence the overall ground-
state behaviour of the e–h system. Our present study is partly motivated by this gap between
the theory and the actual physical scenario. We intend to examine in this paper the ground-state
behaviour of the coupled e–h system by including the mass asymmetry of electrons and holes.
To be even more close to reality, we also plan to include in our study the finite thickness of the
electron and hole layers. We will treat the intra- and inter-layer correlations at the same level
of approximation within the tested dynamical STLS [15] approach. It is appropriate to point
out here that Alatalo et al [16] have earlier studied the effect of finite thickness of layers by
employing the variational hypernetted-chain approach for correlations. Recently, Kainth et al
[17] have examined the impact of finite width on the excitation spectrum of an electron bilayer.

The paper is organized as follows. In section 2, we give the model used to represent the
coupled e–h quantum well structure. The theoretical formalism is developed here. Section 3
contains results and discussion on the correlation functions, with particular emphasis on the
question of the existence of liquid-DM phase transition in a GaAs/GaAlAs based e–h system.
The concluding remarks are given in section 4.

2. Bilayer model and theoretical formalism

2.1. Bilayer model

Consider a double-quantum-well structure as realized in a system consisting of two coupled
units of a semiconductor heterostructure, e.g., a GaAs/GaAlAs/GaAs heterostructure. In the
e–h quantum well system, electrons and holes are the respective carriers in the two wells. The
wells are assumed to be identical in each respect except for the charge and mass of holes.
In both the wells, the motion of carriers is free along the plane of semiconductor layer (say,
the xy-plane), while it is restricted quantum-mechanically in the transverse direction (i.e., the
z-direction) due to a finite potential barrier in this direction. Accordingly, the single-particle
energies and their corresponding wavefunctions in the well l (l = e or h, is the well index) are
given, respectively, by

El = h̄2 K 2

2m∗
l

+ El,z (1)

and

φl(R, z) = AeiK·Rζl(z), (2)

where m∗
l is the effective mass of carriers in the lth well, El,z represents the energy of z-motion

with ζl(z) as the corresponding wavefunction and A is the appropriate normalization constant.
It may be noticed that capital letters have been used to denote the in-plane quantities. The
quasi-continuous values of in-plane energy combined with the discrete set of values of El,z give
rise to the formation of well-known energy sub-bands. At zero temperature, which is the case
considered here, we assume that the carriers in both the wells occupy only the lowest energy
sub-band.

On considering the finite extension of ζl(z) in the z-direction, the interaction potential
between carriers in the wells l and l ′ is given by

Vll′ (R) = αll′
e2

ε0

∫
dz

∫
dz′ |ζl(z)|2|ζl′(z′)|2√

R2 + (z′ − z)2
, (3)
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or its Fourier transform by Vll′ (Q) = αll′ V (Q)Fll′ (Q), where V (Q) = 2πe2/(Qε0) and
Fll′ (Q), which is commonly referred to as the form factor, is given by

Fll′ (Q) =
∫

dz
∫

dz′e−Q|z′−z||ζl(z)|2|ζl′(z
′)|2. (4)

Here, ε0 is the dielectric constant of the background material, and αll′ equals +1 for l = l ′ and
−1 otherwise. Fll′ (Q) can be determined from the knowledge of the solution of the single-
particle Schrödinger equation[

−h̄2

2m∗
l

d2

dz2
+ Vl(z)

]
ζl(z) = El,zζl(z), (5)

for the z-motion. Vl(z) is obviously the (effective) potential energy function for the z-motion.
It includes, apart from the Hartree term, the effect of exchange-correlations and this fact alone
makes the solution of equation (5), and hence the calculation of Fll′ (Q), an extremely complex
problem.

Equation (5) has been solved numerically by many researchers (see, for example,
reference [18]) starting with different approximate choices for the effective potential Vl(z). The
exact behaviour of the form factor will depend in general upon the details regarding geometry
of the quantum wells in a particular experiment [17, 19]. However, to illustrate the role of the
finite width of layers, we use here the model of Fang and Howard [18, 20]. In this model,
the authors have fitted variationally their numerical results to a simple analytical wavefunction,
ζl(z) = (b3/2)1/2z exp(−bz/2) and the variational parameter b is given for the lowest energy
sub-band by b = (33πm∗

l e2n/(2ε0h̄2))1/3. Within the above model, the in-layer form factor
Fll (Q) is given by

Fll (Q) =
(

1 + Q

b

)−3
[

1 + 9

8

Q

b
+ 3

8

(
Q

b

)2
]

. (6)

For the inter-layer interaction, we continue to ignore the effect of finite width of layers
with the belief that it will be small at sufficiently large spacings. Accordingly, we take in our
model Veh(Q) = −V (Q) exp(−Qd), where d may now be regarded as the average inter-layer
spacing, i.e., the distance between the means of the carrier envelope function |ζl(z)|2 in the two
wells. Further, we assume that the layers are sufficiently apart so as to preclude the possibility
of tunnelling across the layers. Thus, the bilayer model as described above is characterized
completely by the in-layer carrier density n and the inter-layer spacing d .

2.2. Theoretical formalism

For studying the ground-state behaviour of the coupled e–h system, we make use of the
dielectric approach, where the density–density linear response function χ(q, ω) plays the role
of a central quantity. The response function calculation is performed by using the dynamical
version of the STLS mean-field approximation. We report here only the central relations of the
calculation, and for details, see for instance reference [9]. The intra- and inter-layer response
functions are given, respectively, by

χee(Q, ω) = χ0
e (Q, ω)[1 − �hh(Q, ω)χ0

h (Q, ω)]D−1(Q, ω), (7)

χhh(Q, ω) = χ0
h (Q, ω)[1 − �ee(Q, ω)χ0

e (Q, ω)]D−1(Q, ω) (8)

and

χeh(Q, ω) = χ0
e (Q, ω)χ0

h (Q, ω)�eh(Q, ω)D−1(Q, ω), (9)
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where χ0
l (Q, ω) is the density response function of non-interacting carriers in the well l (the so-

called Stern function [21]), �ll′ (Q, ω) = Vll′ (Q)[1 − Gll′ (Q, ω)], is the effective interaction
potential between carriers in the wells l and l ′, and D(Q, ω) is given by

D(Q, ω) = [1 − �ee(Q, ω)χ0
e (Q, ω)][1 − �hh(Q, ω)χ0

h (Q, ω)]
− �2

eh(Q, ω)χ0
e (Q, ω)χ0

h (Q, ω). (10)

Gll′ (Q, ω), which is commonly referred to as the LFC factor, describes the effect of short-
range correlations among carriers in the wells l and l ′, and in the dynamical STLS approach it
is given by

Gll′ (Q, ω) = − 1

n

∫
dQ′

(2π)2

χ0
l (Q, Q′, ω)Vll′ (Q′)
χ0

l (Q, ω)Vll′ (Q)

[
Sll′ (|Q − Q′|) − δll′

]
. (11)

χ0
l (Q, Q′, ω) is the inhomogeneous non-interacting density response function defined by

χ0
l (Q, Q′, ω) = − 2

h̄

∫
dK

(2π)2

f 0
l (K + Q′/2) − f 0

l (K − Q′/2)

ω − h̄K · Q/m∗
l + iη

, (12)

where f 0
l (K ) is the usual non-interacting Fermi–Dirac distribution function and η is a positive

infinitesimal. For Q′ = Q, χ0
l (Q, Q′, ω) reduces to χ0

l (Q, ω). In equation (11), Sll′ (Q) is the
static density structure factor, which is related, in turn, to the imaginary part of χll′ (Q, ω) in
accordance with the fluctuation–dissipation theorem as

Sll′ (Q) = − h̄

πn

∫ ∞

0
dω Imχll′ (Q, ω). (13)

We note from equations (7)–(9) that the calculation of the density response function χll′ (Q, ω)

relies on the knowledge of the LFC factor Gll′ (Q, ω). The LFC factor, in turn, requires the
static structure factor Sll′ (Q) as input. But, the calculation of Sll′ (Q) demands Imχll′ (Q, ω)

(see equation (13)). This implies that the response function calculation involves the self-
consistent solution of equations (7)–(9), (11) and (13).

It is appropriate to point out here that the LFC factor is frequency-dependent or dynamic
in the quantum STLS approach. This constitutes an important positive feature of the
quantum STLS approach over the original STLS method, where the LFC factor is frequency-
independent, i.e., static. Further, we note from equation (11) that the quantum STLS
inter-layer LFC factor is not symmetric with respect to an interchange of l and l ′, i.e.,
Gll′ (Q, ω) �= Gl′l(Q, ω), for l �= l ′. The asymmetry enters directly through the factor
{χ0

l (Q, Q′, ω)/χ0
l (Q, ω)} in equation (11), for it contains the carrier effective mass m∗

l . An
asymmetric inter-layer LFC factor, in turn, will lead to an asymmetric inter-layer density
response function χll′ (Q, ω). However, the inter-layer response function χll′ (Q, ω) and hence,
the corresponding correlation function Sll′ (Q), must remain unchanged under an interchange
of l and l ′. We surmount this problem of asymmetry by taking the inter-layer LFC factor as the
average of Geh(Q, ω) and Ghe(Q, ω). A similar kind of asymmetry problem was encountered
by Nafari and Asgari [22] while extending the quantum STLS theory to a multi-sub-band one-
dimensional electron gas. Interestingly, there is no such problem of asymmetry with the LFC
factor of the conventional STLS approach.

In the next section, we present numerical results for the ground-state properties of a
GaAs/GaAlAs based e–h coupled quantum well structure, where we take m∗

h/m∗
e = 7.
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Figure 1. Intra- (in panel (a)) and inter-layer (in panel (b)) pair-correlation functions for the finite
width and mass-asymmetric e–h bilayer at d/a∗

0e = 3 and rse = 1, 2 and 4. The STLS results
(dash–dot line) are given at d/a∗

0e = 3 and rse = 4. (a) The legends indicate the rse values. At
a given rse, the ghh(R) curve originates from the region below the corresponding gee(R). (b) The
results for the finite width and mass-symmetric e–h bilayer are plotted at rs = 2 and 4 by dashed
lines. Curves in order of increasing geh(R = 0) correspond to increasing rse.

3. Results and discussion

3.1. Pair-correlation functions

Before addressing the question on the possibility of transition to a DM phase, we present results
for the intra- and inter-layer pair-correlation functions, which constitute rather more basic quan-
tities to describe the behaviour of many-body correlations. The equations (7)–(9), (11) and (13)
are solved numerically in a self-consistent manner and a solution is accepted when the conver-
gence in Sll′ (Q), at each Q in the grid of Q-points, is better than 0.001%. The pair-correlation
function gll′ (R) can then be determined from the inverse Fourier transform of Sll′ (Q) as

gll′ (R) = 1 + 1

n

∫
dQ

(2π)2
eiQ·R[Sll′ (Q) − δll′ ]. (14)

We plot, respectively, in figures 1(a) and (b) the intra- and inter-layer correlation functions
at different carrier densities rse by keeping the layer spacing fixed at d/a∗

0e = 3. Here,
rse = 1/(a∗

0e

√
nπ) is the electron density parameter, with a∗

0e = ε0h̄2/(m∗
e e2) being the

effective Bohr atomic radius for electrons. We notice from figure 1(a) that, for the same number
density, the holes are comparatively more strongly correlated as compared to electrons. This
difference in the behaviour of correlation functions is on expected lines since, at the same
number density, the coupling or the rs parameter (i.e., the ratio of potential and kinetic energies)
for the layer of holes is greater than that for the layer of electrons by a factor of m∗

h/m∗
e ,

i.e., rsh = rse(m∗
h/m∗

e). Also, the intra- and inter-layer correlations are seen to build up
continuously with increasing rse at a given d/a∗

0e. To make explicit the dependence of geh(R)

on the mass asymmetry, we have reported in figure 1(b) the corresponding geh(R) curves by
taking m∗

h/m∗
e = 1. It may be noted that the heavier holes result in stronger correlations

across the layers and the effect becomes even more important with increasing rse. We have
also given in figures 1(a) and 1(b) the results of the conventional STLS approach at rse = 4
to highlight the importance of the dynamical character of correlations. The STLS ghh(R) is
seen to become slightly negative at small R, which is obviously an unphysical result. However,
this shortcoming of the STLS approximation is rectified in its dynamical version. Further, it
can be seen from figure 1(a) that the difference introduced by the inclusion of the dynamics
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Figure 2. Intra- (in panel (a)) and inter-layer (in panel (b)) pair-correlation functions for the finite
width and mass-asymmetric e–h bilayer at rse = 3 and d/a∗

0e = 3, 2 and 1.6. (a) The legends
indicate the d/a∗

0e values. At a given d/a∗
0e , the ghh(R) curve originates from the region below the

corresponding gee(R). The squares (�) and circles (◦) represent, respectively, the results of g(R)

for the isolated electron and hole layers at rse = 3 and rsh = 21. (b) Results for the finite width and
mass-symmetric e–h bilayer are given at rse = 3 and d/a∗

0 = 3, 2 and 1.6 by dashed lines. Curves
in order of increasing geh(R = 0) correspond to decreasing d/a∗

0e .

of correlations is relatively more pronounced for the layer of holes. This result seems to
be compatible with the general observation that the dynamical aspect of correlations should
become more pertinent [23, 24] with the increasing value of the coupling parameter.

Figures 2(a) and (b) depict, respectively, the d-dependence of the intra- and inter-layer
correlations at a fixed density of rse = 3. For ready reference, the results of g(R) for the
corresponding isolated layers of electrons and holes are also given in figure 2(a). We note that
as the layers are brought closer, the oscillatory structure of both gee(R) and ghh(R) is found to
weaken with respect to their respective single-layer behaviour, while the geh(R) curves imply
a strong build-up of the e–h correlations. The weakening of the oscillatory structure stems
from the screening of the intra-layer interaction potential by the carriers of the second layer.
As d decreases, the probability of finding a hole exactly opposite to an electron increases,
and consequently, the screening of intra-layer correlations grows steadily with the decreasing
d . Further, a comparison of our geh(R) results with the corresponding mass-symmetric case
shows (see figure 2(b)) that the mass asymmetry driven growth of e–h correlations becomes
increasingly significant, especially at small separation, with the diminishing layer spacing. The
comparative picture indicates that the consideration of the mass asymmetry might have serious
repercussion on the recent theoretical [8] and simulation [10] predictions of the critical spacing
for the stability of an excitonic phase in the e–h bilayer.

In figure 3, we have illustrated the influence of the finite width of layers on the correlations
by plotting the intra- and inter-layer correlation functions with and without treating the finite
thickness at rse = 2 and d/a∗

0e = 1.5. With the inclusion of the finite width, the in-layer
correlations are seen to become weaker, while the correlations between the layers are found to
grow somewhat stronger. Apart from these quantitative differences, the correlation functions
exhibit a similar dependence on rse and d . The weakening of in-layer correlations is attributed
to the softening of the in-layer interaction potential due to the finite width.

3.2. Static density susceptibility and density-modulated phase

In order to examine the stability of the liquid phase against transition into a DM state, we
proceed by calculating the liquid-state static (i.e., ω = 0) density susceptibility of the e–h
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Figure 3. Intra- and inter-layer pair-correlation functions commencing, respectively, in the lower
and upper halves of the figure, for the mass-asymmetric e–h bilayer at indicated rse and d/a∗

0e ,
with and without the finite width of layers. The ghh(R) curves originate from the region below the
corresponding gee(R).

system. The phase transition, if any, may appear in the form of a divergence in the static
susceptibility at a finite wavevector representing the period of density modulation. For the
coupled e–h bilayer, the static density susceptibility is determined by diagonalizing the static
density response matrix as

χ±(Q, 0) = 2

χ−1
e (Q, 0) + χ−1

h (Q, 0) ±
[
{χ−1

e (Q, 0) − χ−1
h (Q, 0)}2 + 4�2

eh(Q, 0)
]1/2

, (15)

where

χl(Q, 0) = χ0
l (Q, 0)

1 − �ll(Q, 0)χ0
l (Q, 0)

, l = e or h. (16)

The + and − signs define, respectively, the in-phase and out-of-phase (π ) modes of density
modulation in the two layers. As proposed originally by Swierkowski et al [25], the in-phase
mode can exhibit a singular behaviour at some finite value of Q even if χe(Q, 0) and χh(Q, 0)

are finite at that Q. Based upon this argument, the dynamic STLS theory has predicted [9] for
the zero-width and mass-symmetric e–h bilayer, at sufficiently small spacing, the presence of
a phase transition from liquid to (i) a WC phase below a critical density (r c

s ≈ 10) and (ii) a
CDW phase at relatively higher densities (rs < 10). In the following, we investigate in detail
the effect of mass asymmetry and finite width of layers on the above prediction of liquid–DM
phase transition.

3.2.1. Mass asymmetry effects. To bring out the role of mass asymmetry, we examine
the behaviour of χ+(Q, 0) by first considering the mass asymmetry alone, i.e., we ignore
temporarily the finite thickness of layers. The corresponding results of χ+(Q, 0) are depicted
in figures 4(a)–(c) at some selected values of rse and d/a∗

0e. We infer from our numerical
calculations that χ+(Q, 0) has a noticeable peak at Q/QF ≈ 2.5 when two layers are
sufficiently apart; QF is the two-dimensional Fermi wavevector. At a given d/a∗

0e, the height
of this peak increases quite rapidly with increasing rse, while it becomes somewhat weaker
on decreasing d/a∗

0e at a fixed rse. However, there begins emerging, at sufficiently small
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Figure 4. (a)–(c) In-phase component of the static density susceptibility χ+(Q, 0) for the zero-
width and mass-asymmetric e–h bilayer at different rse and d/a∗

0e . The legends indicate the values
of d/a∗

0e . (d) Critical layer spacings dc1/a∗
0e (open circles ◦) and dc2/a∗

0e (solid circles •) versus
rse for the zero-width and mass-asymmetric e–h bilayer. The lines are just a guide for the eye.
CDW, liquid and WC refer, respectively, to the stability regions of the charge-density-wave, liquid
and Wigner crystal phases.

d/a∗
0e, a second peak in χ+(Q, 0) in the small-Q region, with its strength found to be growing

monotonically relative to the Q/QF ≈ 2.5 peak with diminishing d/a∗
0e. But, we encounter

at each rse a critical spacing (say, dc1) below which it becomes almost impossible to obtain
the self-consistent solution of equations (7)–(9), (11) and (13) and, hence the χ+(Q, 0); for
instance, dc1/a∗

0e ≈ 0.375 at rse = 2. In figure 4(d), dc1/a∗
0e is plotted as a function of rse

and it is seen to be an increasing function of rse. Further, we meet with a critical value of
rse, namely r c

se ≈ 2.4, at and above which it is not possible to determine the self-consistent
response function not only for d < dc1, but also for d higher than a critical spacing dc2 (>dc1).
In this region, i.e., for rse � r c

se and d ≈ dc2, the Q/QF ≈ 2.5 peak dominates completely the
small-Q peak. dc2 is seen to decrease rapidly with the increasing departure of rse from r c

se and
it appears to meet dc1 approximately at rse = 3 (figure 4(d)). In other words, the calculation
of the self-consistent response function becomes almost intractable beyond rse ≈ 3 whatever
the value of d/a∗

0e is. Although we are not able here to calculate χ+(Q, 0) for d < dc1 when
rse < r c

se and for dc2 < d < dc1 when r c
se � rse < 3, the Q/QF ≈ 2.5 peak appears to diverge

for rse � r c
se and d � dc2, while the small-Q peak does so for all rse when d � dc1. On the

other hand, the out-of-phase component of susceptibility χ−(Q, 0), as well as χe(Q, 0) and
χh(Q, 0) which comprise the basic ingredients of the susceptibility calculation, always shows
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a smooth dependence on Q irrespective of the choice of rse and d . We elucidate this point in
figure 5 by plotting these quantities in the critical region, e.g., rse = 2.9 and d/a∗

0e = 0.835;
for this choice of parameters, χ+(Q, 0) nearly diverges at Q/QF ≈ 2.5 as can be noticed from
figure 4(c). Thus, it becomes absolutely clear that the large peak in χ+(Q, 0) originates entirely
from its denominator (see equation (15)).

The development of an apparently diverging peak in χ+(Q, 0) could be interpreted in our
theory as an indication for the onset of a phase transition from the liquid to an in-phase DM
ground state. The small-Q peak, whose location varies with rse, might indicate an instability of
the liquid against a CDW ground state. It is not possible in our theory to draw a firm conclusion
about the precise nature of the small-Q DM phase and its recognition as a CDW phase might
be just one possibility. On the other hand, the Q/QF ≈ 2.5 peak, whose position lies close
to the reciprocal lattice vector of the triangular lattice, could be a precursor for the liquid–WC
phase transition. Thus, our theory predicts that the e–h liquid might become unstable against
transition into (i) a WC phase below a critical electron density (r c

se ≈ 2.4) at sufficiently large
separation (d � dc2) and (ii) a CDW phase always in the adequately close vicinity of layers
(d � dc1). Consequently, the liquid phase remains stable for d above dc1 when rse < r c

se
and for dc1 < d < dc2 when r c

se � rse < 3; see figure 4(d). It is important to note that the
critical density for crystallization (r c

se ≈ 2.4) is increased greatly in the coupled e–h system as
compared to the corresponding estimate of the dynamic STLS theory, namely r c

si ≈ 16.45,
for an isolated single electron layer. However, as compared to an isolated hole layer, the
crystallization density is slightly decreased, since r c

sh = r c
se(m

∗
h/m∗

e) ≈ 16.8, lies somewhat
above r c

si.
Next, we note that for large d the e–h layers should become uncoupled and accordingly,

for r c
se � rse � 3 and d 	 dc2, the electrons should be in the liquid phase, while the holes

should be in the WC phase, since the corresponding rsh parameter lies above r c
si, the critical

crystallization rs in an isolated layer. A natural question arises: whether the WC phase at d
just above dc2 is the same as the one realized for d 	 dc2 (say, the phase WC-I) or the phase
where both the hole and electron layers are in the WC state (say, the phase WC-II). To answer
this question, we look into the behaviour of the ratio of the static density modulation in the
electron and hole layers, i.e., [δρe(Q, 0)/δρh(Q, 0)], for the in-phase eigenmode at d = dc2.
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for 2.4 � rse < 3. The pair of legends represent the values of dc2 and rse. The line with circles
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If this ratio becomes zero at Q/QF ≈ 2.5, it would imply that the e–h bilayer is in the phase
WC-I at d just above dc2 and it continues in this phase up to d → ∞. On the other hand, a
non-zero value of this ratio would imply the stability of the phase WC-II for d just above dc2

and hence, the existence of a critical separation dc3 (>dc2) at which the phase WC-II would
transform into the phase WC-I. The ratio [δρe(Q, 0)/δρh(Q, 0)] is plotted in figure 6 for the
in-phase eigenmode for different rse satisfying r c

se � rse < 3, at their respective values of
dc2. For ready reference, results are also shown for the uncoupled e–h system (i.e., in the limit
d → ∞) by taking rse = r c

si(m
∗
e/m∗

h)(=2.35), so that the corresponding rsh equals r c
si and the

system is in phase WC-I. We notice that the ratio [δρe(Q, 0)/δρh(Q, 0)]Q/QF≈2.5 approaches,
as per our anticipation, zero in the limit d → ∞ at rse = 2.35 and that it takes non-zero finite
value at d = dc2 for r c

se � rse < 3, with its magnitude building up continuously with increasing
rse. Thus, our results indicate that the electron and hole layers are both in the WC state (i.e.,
in the phase WC-II) at d just above dc2, and therefore imply the existence of a phase boundary
between the phases WC-II and WC-I at some critical spacing dc3 (>dc2). It is not possible
to predict dc3, since we are not able to obtain the self-consistent LFC factors for d > dc2.
The layer of strongly correlated holes apparently tends to induce localization in the otherwise
less correlated layer of electrons via the attractive e–h correlations. However, on account of
mass asymmetry, the localization is relatively less pronounced in the layer of electrons. This
point is elaborated in figure 7 by plotting gee(R), ghh(R) and geh(R) at rse = 2.8 (>r c

se), and
d = dc2 (=1.001a∗

0e) and dc1 (=0.69a∗
0e). Apart from this, one can also note an apparent

change in the behaviour of gee(R) and ghh(R) near transition to the CDW state.
We envisage the following mechanism underlying the above phase transition: as the

electron and hole layers are brought in from large distance, the attractive e–h interactions,
boosted further by the attractive e–h correlations, tend to compensate for the kinetic-energy
cost of crystallization. At the same time, the e–h correlations add to the screening of the intra-
layer interaction potential, and thereby act to weaken the in-layer correlations. Both of these
effects, which have the same origin but are of opposite nature, grow in their magnitude with
decreasing d . Below a critical density (r c

se ≈ 2.4) and at sufficiently large separation (d ≈ dc3),
the localization mechanism seems to win over the screening effects, and consequently supports
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the formation of the coupled WC phase (i.e., the phase WC-II). However, our theory predicts
that the coupled WC phase remains stable for dc2 < d < dc3. This, in turn, suggests that the
screening effects start dominating over the e–h correlation-mediated localization for d < dc2,
and accordingly the liquid phase emerges stable in this region. Decreasing d further causes the
liquid to become unstable against a possible CDW ground state for d < dc1.

At this stage, it is interesting to compare our above prediction on the DM phase with the
corresponding results [9] for the zero-width and mass-symmetric e–h bilayer, where rsh = rse

(say, rs). A cross comparison of results shows that the consideration of the actual effective
mass of holes brings about an overall change in the ground state of the e–h bilayer. Among
notable points, the crystallization is now predicted at r c

se ≈ 2.4, a value much lower than
the corresponding result, namely r c

s ≈ 10, for the mass-symmetric case. Thus, the critical
density for Wigner crystallization is enhanced by a factor of about 4. This result constitutes
one of the important findings of our present study. Second, it is noted that the build-up of e–h
correlations with the diminishing layer spacing (d � dc2) always has a tendency to suppress
the Q/QF ≈ 2.5 peak in χ+(Q, 0) as compared to the small-Q peak, and therefore the Wigner
phase with respect to the CDW phase. At sufficiently small d , these correlations are rather seen
to always support the formation of a CDW ground state. This behaviour of the e–h correlations
is in contrast with their role in the symmetric e–h system [9], where they are predicted to always
support, in the close proximity of layers, the Wigner state for rs � 10 and the CDW phase for
rs < 10; see figure 8(d). Accordingly, the mass-symmetric e–h system exhibits, unlike its
mass-asymmetric counterpart, always only one instability at a given rs, which lies in the region
of sufficiently small d (compare figures 4(d) and 8(d)).

It would also be interesting to examine the possibility of the DM ground state by using
the conventional STLS method for correlations, for it should reflect directly on the role of
the dynamical nature of correlations. We find that the STLS approach predicts, parallel to its
application to the mass-symmetric e–h system [7], an instability towards a CDW ground state
in the close vicinity of layers. There is no evidence pointing to the formation of a WC state for
densities as low as rse = 10. Thus, the dynamics of correlations is seen as playing a crucial role
in predicting the ground state of the e–h bilayer. The reason underlying different predictions of
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Figure 8. (a)–(c) In-phase component of the static density susceptibility χ+(Q, 0) for the finite
width and mass-symmetric e–h bilayer at different values of rs and d/a∗

0 . The legends indicate the
values of d/a∗

0 . (d) Critical layer spacing dc/a∗
0 for the transition from the liquid to a DM phase,

as a function of rs for the mass-symmetric e–h bilayer, with (solid circles •) and without (open
circles ◦) the finite width of the layers. The arrows point to the critical rs for crossover from the
charge-density-wave instability to the Wigner crystal instability; the lines are just a guide for the
eye.

the dynamical and conventional STLS approaches lies in the difference between their respective
LFC factors [9].

3.2.2. Finite width effects. For illustrating the impact of the finite width of layers, we now
discuss the behaviour of χ+(Q, 0) for a model e–h system, where layers are treated as of finite
width, but mass asymmetry is ignored, i.e., m∗

h/m∗
e = 1. For such a system, our calculation

reveals that χ+(Q, 0) exhibits, at the qualitative level, a behaviour similar to that for the
corresponding model of zero-width layers [9]. Nevertheless, we report here, for the sake of
completeness, the results of χ+(Q, 0) in figures 8(a)–(c) at some relevant values of rs and d .
To summarize, the e–h liquid can become unstable against a DM phase (of the CDW and WC
types) below a critical spacing dc. The CDW ground state now prevails over the WC phase for
rs approaching 16, and then there occurs a crossover to the WC phase at rs � 16 (figures 8(a)–
(c). As compared to an isolated finite thickness layer, the crystallization density is enhanced
(by about 40%) due to e–h correlations in the coupled e–h system. For a quick reflection on
the effect of finite width, we have reported in figure 8(d) the critical layer spacing dc/a∗

0 for the
transition from the liquid to a DM phase, as a function of rs, with and without the finite width
effects. It can be noticed that the inclusion of the finite width results in the lowering of the
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Figure 9. (a)–(c) In-phase component of the static density susceptibility χ+(Q, 0) for the finite
width and mass-asymmetric e–h bilayer at different values of rse and d/a∗
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respectively, to the stability regions of the charge-density-wave and the Wigner crystal states.

critical density for Wigner crystallization by an appreciable factor of about 1.6. This decrease
in crystallization density is attributed to the softening of the intra-layer interaction potential due
to the finite thickness, since the softening of interaction is followed by a direct reduction in the
strength of intra-layer correlations.

3.2.3. Mass asymmetry and finite width effects. Finally, we compute χ+(Q, 0) by taking
into account both the mass asymmetry and finite width effects. The χ+(Q, 0) results, seen in
conjunction with the calculation that considers only the mass asymmetry, imply that χ+(Q, 0)

does not undergo any qualitative change on inclusion of the finite width of layers. However,
there are significant quantitative changes in χ+(Q, 0) emanating directly from the weakening
of intra-layer correlations due to the finite width. As a noticeable change, the Wigner
crystallization now occurs at r c

se ≈ 3.75, which in turn implies that the finite width effects
act to lower the critical density for crystallization by a factor of about 1.6. Interestingly,
the critical density is lowered by almost the same amount as that for a mass-symmetric e–h
bilayer. As in the case of the zero-width e–h system, the crystallization rs lies slightly above the
corresponding value for a finite width isolated hole layer. The results of χ+(Q, 0) are shown in
figures 9(a)–(c) for certain values of rse and d/a∗

0e. In figure 9(d), we have displayed the points
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of instability, i.e., dc1 and dc2, as a function of rse for the mass-asymmetric e–h bilayer, with
and without treating the finite thickness of layers. For d below dc1, the liquid changes into a
CDW ground state, whereas for d just above dc2 there occurs a liquid–WC phase transition.

3.3. Dynamic excitation spectrum

We noted in the preceding section that the static properties of the e–h system are markedly
affected at/near system parameters associated with the liquid–DM phase transition. Keeping
this in view, it would be interesting and important to examine the behaviour of the dynamic
excitation spectrum of the e–h system in the transition region. One can speculate [26] to find
the signs of the above structural transition in the dynamic excitation spectrum. For this purpose,
we look into the behaviour of the imaginary part of the density susceptibility χ±(Q, ω), which
can be obtained from equation (15) on replacing ω = 0 with a variable ω. The only inputs
required are the real and imaginary parts of the intra- and inter-layer LFC factors, and these can
be determined numerically from equation (11) by using the self-consistent results of Sll′ (Q).

In this way, Im χ±(Q, ω) is calculated in the entire Q–ω plane over a wide range of rse

and d . A careful analysis of results shows that the in-phase mode, i.e., Im χ+(Q, ω), is strongly
affected by correlations near the transition region. We demonstrate this point (for the case that
treats both the mass asymmetry and finite width of layers) in figure 10 by plotting Im χ+(Q, ω)

as a function of ω, keeping Q fixed at a value (≈2.4QF) equal to the one associated with
the WC phase at system parameters in the transition region, namely, rse = r c

se = 3.75 and
d/a∗

0e = dc2/a∗
0e (=4.5), dc1/a∗

0e (=1.82) and 2. It can be seen that Im χ+(Q, ω) has a
noticeable peak at small ω, with its strength increasing rapidly as d approaches the critical
spacing (i.e., dc2) for the emergence of the liquid–WC transition. As a notable point, the
position of this peak moves towards smaller ω as d is increased towards dc2. Moreover,
for d = dc2, the position of the peak seems to converge to ω = 0. Though not reported
here, we have found a qualitatively similar behaviour of Im χ+(Q, ω) at system parameters
appropriate to the liquid–CDW phase transition. Further, if we now vary Q keeping d and rs
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fixed, respectively, at dc2 (=4.5a∗
0e) and r c

se (=3.75), the small-ω peak is almost suppressed.
We illustrate this in figure 10 by reporting Im χ+(Q, ω) for Q/QF = 0.5 and 3.0 by choosing
rse = r c

se = 3.75 and d = dc2 = 4.5a∗
0e. The above behaviour of Im χ+(Q, ω) suggests that it

costs the system, close to the transition point, very little or nearly zero energy to excite it from
the liquid to a DM phase. Consequently, the e–h liquid could become spontaneously unstable
with respect to a DM phase for parameters in the transition region. Hence, as envisaged, we
detect clear signs of the liquid–DM phase transition in the dynamic excitation spectrum.

4. Summary and concluding remarks

To summarize, we have studied the effect of many-body correlations on the ground-state
behaviour of the coupled e–h quantum well structure by taking into account the mass
asymmetry and finite thickness of wells. The correlations are treated within the dynamical
self-consistent mean-field approximation of Hasegawa and Shimizu. We find that, at the
same number density of electrons and holes, the mass asymmetry results in relatively stronger
correlation of carriers within the layer of holes as well as across the layers. This change in the
behaviour of correlations is seen to have a marked effect on the ground state of the e–h bilayer.
As an interesting consequence, the critical density for the onset of Wigner crystallization
is enhanced greatly (e.g., by a factor of about 4 for a GaAs/GaAlAs based e–h system) as
compared to the corresponding estimate for the mass-symmetric e–h bilayer. However, when
compared with an isolated single hole layer, the crystallization density lies slightly on its lower
side, and hence implies that the layer of holes compensates partially for the kinetic-energy
cost of localization in the otherwise less correlated layer of electrons. Apart from this, we
discover a change in the role played by the e–h correlations. These correlations favour the
WC phase below a critical density only at sufficiently large layer separation (d � dc2). At
intermediate separation (dc1 < d < dc2), the liquid phase represents the stable state, with the
liquid, however, becoming unstable against a CDW ground state for d < dc1. This behaviour
of the e–h correlations is in contrast with their role in the mass-symmetric system, where these
correlations are predicted to always support, at sufficiently small separation, the WC phase
below a critical density and the CDW phase at higher densities. Further, we have found that the
inclusion of the finite thickness of layers amounts to weakening of the intra-layer correlations,
and consequently has an effect of lowering the critical density for Wigner crystallization by an
appreciable factor of about 1.6.

In conclusion, our study amply demonstrates the role of the mass asymmetry and finite
thickness of layers in the study of coupled e–h systems. It particularly emphasizes the
importance of the inclusion of these effects into any theoretical or simulation study before
drawing a comparison with experiments. It would be interesting to have the computer
simulation experiments done on the ground state of a mass-asymmetric coupled e–h bilayer.
Our present study could be a stimulant in this direction.
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